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The phenomenon of vortex reconnection is analysed numerically and the results are 
compared qualitatively with the predictions of a model of reconnection recently 
proposed by Saffman. Using spectral methods over both uniform and strained 
meshes, numerical simulations are performed of two nearly parallel, counter-rotating 
vortex tubes, over the range of Reynolds numbers Re = 1000-3500. The calculations 
utilizing a uniform mesh are performed for Re < 1500 with a resolution of 128 points 
in each direction. The calculations utilizing a stretched mesh are performed for 1500 < 
Re < 3500 with a resolution of up to 160 points in each direction and with a four- 
fold stretching about the region of reconnection. We present results for the variation 
of the maximum of vorticity, the time to reconnection, and other diagnostics of this 
flow as functions of the Reynolds number. From numerical simulation of the model 
equations, we infer and demonstrate the existence of exact solutions to the model to 
which its solutions arising from more general initial conditions are attracted a t  late 
times. In the limit of infinite Reynolds number, the model predicts eventual 
saturation of the axial strain, a feature observed in the recent work of Pumir & Siggia 
and also observed in our full numerical simulations. I n  this respect the model 
captures the observed local dynamics of vortex stretching. However, because the 
global effects of external flows are not included in the model, the model predicts that 
the axial strain eventually decays and the maximum vorticity grows linearly a t  late 
times. In  contrast, from the full simulations, we see the possible emergence of the 
behaviour of the axial strain at  infinite Reynolds number. As our simulations are 
affected by non-local effects, we do observe saturation of the strain but no 
subsequent decay. It is also shown analytically that the model predicts a reconnection 
time which varies logarithmically with increasing Reynolds number. Comparison 
with the full numerical simulations shows a much slower variation of the reconnection 
time with increasing Reynolds number than predicted by the model. Other points of' 
agreement and disagreement between the Saffman model and the simulations are 
discussed. Reconnection is also discussed from the point of view of its relation to the 
possible onset of nearly singular behaviour of the Euler equation. In  agreement with 
the recent numerical results of Pumir & Siggia, our results suggest that no singularity 
in the vorticity will form in a finite time for this initial condition. 
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1. Introduction 
The phenomenon of vortex reconnection has become a topic of considerable 

research interest in recent years. The phenomenon is often observed in aircraft 
contrails, and has been reproduced in numerous laboratory experiments and 
numerical simulations. Crow (1970) was the first to analyse the initial instability 
which leads to reconnection in which sections of counter-rotating tubes pair and 
stretch. In the late stages of this instability the paired portions of the tubes seem to 
annihilate and the tubes are transformed into a series of vortex rings. Pictures of the 
phenomenon can be found in the album assembled by Van Dyke (1982). 
Experimental measurements of it have been performed by Fohl & Turner (1975), 
Oshima & Asaka (1977), and recently by Schatzle (1987), who has made velocity 
measurements of t w o  colliding vortex rings by means of laser Doppler anemometry . 
Numerical simulations have been performed by Ashurst & Meiron (1987), Kida 
(1987), Kerr & Hussain (1989), Meiron et al. (1989), Melander & Hussain (1989), 
Melander & Zabusky (1989), Anderson & Greengard (1989), Kida & Takaoka (1991), 
and others. 

The phenomenon of reconnection is of interest from both a physical and 
mathematical point of view. Reconnection can only occur in the presence of viscous 
dissipation. The Helmholtz theorems indicate that in the absence of viscosity, all 
incompressible velocity fields can be viewed as arising from a collection of 
infinitesimal vortex filaments. These filaments can be shown to be material with the 
flow, so that the identity of each filament is preserved under the flow. In addition, 
since the vorticity field is divergence-free, the filament must be of infinite extent or 
close on itself in the absence of boundaries. In  order to  break these constraints some 
dissipative mechanism such as fluid viscosity must be operative. The reconnection 
process exemplifies the dynamical effects of viscosity at short lengthscales in flows of 
high Reynolds number. 

Reconnection may also play a role in the mathematical theory of long-time 
existence of bounded solutions to the three-dimensional Navier-Stokes and Euler 
equations. There is at present no rigorous proof that, given a smooth velocity field 
as initial data, velocity gradients will stay bounded for all time under the evolution 
of either equation. Numerical simulations have not been able to resolve this issue. 
For example, the numerical work of Brachet et al. (1983) examined the dynamics of 
the Taylor-Green vortex, an initial condition possessing a high degree of symmetry 
which is preserved under the dynamics of both the Euler and Kavier-Stokes 
equations. Earlier work by Morf, Orszag & Frisch (1980) using series analysis 
techniques indicated the possible existence of a singularity in finite time for this flow, 
but further series work and numerical simulations did not lead to a confirmation of 
singular behaviour. Indeed, the later numerical evidence of Brachet et al. favoured 
the interpretation that singularities were not present for these initial conditions even 
in the limit of zero viscosity. 

For the Euler equations, there are constraints on the character of the singular set. 
Beale, Kato & Majda (1984) have shown that if there exists a time, t*, at which a 
solution loses any regularity, then it must be that the maximum of the vorticity 
magnitude over the flow domain becomes unbounded, i.e. 
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and that, moreover, lim [* i /wilm(t)  dt = co 
t+t* 

Equation (1.2) provides a constraint on how the vorticity must diverge. For example, 
a divergence such as 

is disallowed by (1.2). From physical considerations, it is natural to expect that the 
presence of viscosity should restore boundedness and that the Navier-Stokes 
equations should possess regular solutions for all time. Rut even this has not been 
proven. 

Grauer & Sideris (1991) have recently reported finite-difference simulations of an 
inviscid axisymmetric flow with swirl and claim that a singularity occurs after a 
finite time t* and its growth is consistent with the theoretical results of Beale et al. 
(1984). However, no specific rate of divergence is given. The possibility that this kind 
of singular vortex growth occurs in these constrained flows requires much further 
study, and in particular, careful numerical tests of accuracy to rule out numerically 
induced instabilities. However, a singularity which may not be possible without 
constraints may be possible for the Grauer & Sideris flow because the flow cannot 
'wriggle ' its way out of singularity formation. 

The physical characteristics of flow near a singularity are also poorly understood. 
A prevailing hypothesis discussed, for example, in the work of Brachet et al. (1983) 
was that the vortex lines of the flow near a singularity were highly convoluted, of 
infinite length and therefore fractal in nature. A similar belief underscores the work 
of Chorin (1981). A quite different physical picture was proposed by Siggia (1985) and 
Siggia & Pumir (1987). They have modelled the interaction of vortex tubes as the 
flow resulting from the close interaction of oppositely signed vortex filaments and 
have shown that vortex stretching in such a flow may lead to a singularity in finite 
time. The results suggest a scenario for singularity quite different from those which 
involve complicated tangling of the vortex lines. Within the context of the filament 
model, Siggia & Pumir also indicated that even under the Navier-Stokes equations, 
large but not divergent velocities could be produced. 

The use of filaments constitutes an acceptable approximation to the solution of the 
Euler equations only under certain conditions, The conclusions of Siggia & Pumir 
(1987) on the near singularity of the Navier-Stokes equations (and also on the 
singularity of the Euler equations) depend crucially on the assumption that the 
circular cores of the vortex tubes which are modelled as filaments do not deform 
appreciably as the tubes interact. Such considerations will also play a role in any 
analysis of reconnection, particularly in the limit of high Reynolds number. For 
example, Pumir & Kerr (1988) observed substantial deformation of the cores in their 
numerical simulations. Later numerical calculations by Pumir & Siggia (1990) 
indicate that the deformation of the vortex cores effectively prohibits unbounded 
growth of the vorticity. Thus deformation can also be expected to play an important 
role in reconnection as well. 

In  this work we examine several models of the reconnection process. Each of these 
models makes assumptions on the flow geometry in order to obtain analytical 
estimates of flow quantities. In  $1.1 we review the Siggia-Pumir model of 
singularities in the context of reconnection. We then examine in Q 1.2 models which 
attempt to build in the effects of vortex deformation. The first model was proposed 
by Kambe (1983) and attempts to incorporate the effect of in-plane strains on the 
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structure of the vortices. Buntine & Pullin (1989) modified Kambe’s model to include 
the effects of axial, out-of-plane strain. Recently, Saffman (1990) has proposed a 
model which incorporates out-of-plane strains (and hence vortex stretching) in a 
partially self-consistent manner by considering the axial pressure gradients in the 
cores of the reconnecting tubes. In  this paper we show that Saffman’s model 
possesses simple analytical solutions which describe the long-time dynamics of the 
model. Numerical studies of the Saffman model are described in $2.2.  The numerics 
demonstrate the existence of these simple analytical solutions, valid a t  late times, 
and the solutions are derived in $2.3.  

In  order to assess the validity of these models we also perform full numerical 
simulations of the flow of two oppositely signed vortex tubes and their subsequent 
reconnection under the Navier-Stokes equations. Our goal here is to provide 
quantitative estimates of the deformation of the vortex cores, the amplification of 
vorticity, and the timescale for reconnection. The simulations utilize a standard 
pseudo-spectral method as well as an adaptive spectral method which provides 
enhanced resolution in specified regions of physical space. The two numerical 
methods are described in $ 3.1. The initial conditions considered here have symmetries 
that are preserved by the ensuing flow, and these symmetries are exploited to reduce 
the computational work. These are described in $3.2.  The results of the numerical 
simulations are described in 993.3 and 3.4. These calculations are carried out at  
moderate Reynolds numbers, but are valuable in indicating the physical processes 
which cause the deformation of the vortices. As the Reynolds number is increased, 
we see the emergence of behaviour in certain quantities which may be independent 
of the Reynolds number and hence represents the limit of infinite Reynolds number. 
We observe here, in agreement with the numerical calculations of Pumir & Siggia 
(1990) and Anderson & Greengard (1989), that  the axial strain initially increases, 
causing vortex stretching, but the deformation of the vortex cores eventually causes 
the saturation of the strain, and thus we infer that  the vorticity will not become 
unbounded in a finite time for this flow. 

1.1. Siggia-Pumir model for singulurities 
Given a distribution of vorticity o ( x ,  y,z,t), it is possible to construct the flow 
velocity v(x ,  y, 2 ,  t )  by means of the Biot-Savart law : 

w(x’, y’, d ,  t )  x ( r -r ’ )  
Jr - r’lt , 

where the integration extends over the support V of the vorticity w. Alternatively, 
one may view u ( x ,  y, z ,  t )  as that velocity arising from a continuous distribution of 
vortex filaments. If the velocity distribution takes the form of an isolated filament 
then (1.4) simplifies to 

where r is the circulation of the vortex filament and 6 is a Lagrangian variable used 
to parameterize the filament. If the vorticity is concentrated within a thin tube then 
the velocity given by (1 5)  serves as an approximation for the velocity given by (1.4). 
It will not, however, provide a uniformly valid approximation. The integral in (i.5) 
diverges logarithmically if r is set to be any point along the filament. This is simply 
a reflection of the fact that (1.5) would represent only the first term in a multipole 
expansion for the velocity produced by any vorticity distribution with ne4 circulation 
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r. Such an expression gives sensible velocities provided that the observation point 
r is sufficiently far from the filament relative to some typical core size for the 
vorticity distribution. In order to regularize the velocity given by (1.5), the core 
structure can be taken into account in an approximate way by introducing a core 
length r(5) which in general varies along the filament and rewriting (1.5) as 

Since (1.6) now provides a finite velocity field, we may now apply the Helmholtz laws 
to give a prescription for the motion of the vortex filament r(6,  t )  according to 

dr(& Wdt = v ( 0 ,  (1.7) 
where v(6) is the velocity obtained from (1.6) by setting r to r(g) .  In using (1.6) to 
provide an advection velocity for the filament we are failing to account for the 
contribution to the velocity which is due to the finite core size. This approximation 
completely ignores, for example, internal flows within the core. 

It is possible to incorporate some aspects of the true core phenomena given by (1.4) 
into (1.6). For example, in calculations using ring filaments it is possible to adjust g 
such that it gives the correct velocity of advance for a vortex ring of a given radius 
and vorticity distribution. In  numerical simulations in which filaments are stretched, 
the conservation of tube volume under the flow which is a consequence of the 
Helmholtz laws can be approximated through the condition 

a'([) Idr/d[l = constant. (1.8) 

Equation (1.8) is only one of many possible ' core laws ' which express conservation 
of tube volume. Combined with the equation 

dr(6)ldt = V ( 6 ) >  (1.9) 
( 1  -6) and (1.8) form a closed system which may be used to numerically compute the 
evolution of the filament. 

Siggia & Pumir (1987) have performed careful simulations using this set of 
equations, and have shown convincingly that an isolated filament can fold upon itself 
such that oppositely signed pieces of the filament pair advance under their mutual 
velocity fields and cause stretching of the filament. Because of the constraint of 
volume conservation, the core size will shrink as the filament stretches. A typical 
velocity scale along the filament for a given core size from the BiobSavart law is 

14 - r/r, 
101 r p z  

while a typical vorticity scale is 
(1.10) 

(1 .11)  

Thus if the core size reduces to zero in a finite time, the filament model predicts that 
the velocity and vorticity will both diverge. For the Euler equation, the constraint 
of energy conservation effectively forbids a velocity singularity that has a finite 
spatial support but pointwise divergence cannot be ruled out. The results of Siggia 
& Pumir indicate that the stretching is so rapid that the core size reduces to zero in 
a finite time, leading to a divergent vorticity. 

By taking the constant in (1.8) to be unity and differentiating with respect to time, 
(1.8) becomes 

da2 d 
dt dt 
~- --..-I.($), (1.12) 
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where ds/d[ = ]dr/dkJ. As a filament pairs, Siggia & Pumir observe that the 
stretching is so rapid that the decrease of the interfilament spacing is directly 
correlated with the decrease of the core size. This is due to the straining flow set up 
by the filament pair. Using this information, Siggia & Pumir estimated the right- 
hand side of (1.12) to be 

(1.13) 

Once the rapid stretching ensues the core behaves according to the relation 

da2/dt K - r (1.14) 

or cr - [r(t*-t)]t (1.15) 

The collapse of the core is self-similar in that only the core size and the timescale are 
involved in the local enforcement of conservation of circulation. Such a divergence 
is consistent with the theoretical constraints given in (1.1) and (1.2). 

There are several difficulties with this scenario for a finite-time singularity. A 
filament description is certainly questionable when applied at such small length- 
scales. Since the cores are constrained to be circular it is possible for the cores to 
overlap in this model. Indeed, it is observed that the interfilament spacing decreases 
to a fraction of the core size once the collapse begins indicating overlap of the cores. 
Siggia & Pumir (1987) showed that the singular scaling laws predicted from their 
filament model could be expected to hold provided that the circular cores do not 
deform appreciably. Their later calculations showed that the cores do deform and no 
analytical estimate is currently available for the effect of the deformation on the 
filament velocity . 

An additional physical effect which is not included in a simple filament model is the 
effect of axial flows along the tube. Models have been constructed by Moore & 
Saffman (1972) and Lundgren & Ashurst (1988) which model the effect of the swirling 
flows in the core on the dynamics of the tube. In  such models the core law (1.8) is used 
along with equations of motion for the axial velocity. These models continue to 
assume that the cores are circular but account for the presence of waves travelling 
along the core which can redistribute the core area along the filament. Numerical 
studies due to Lundgren & Ashurst (1988) show, however, that this effect will not 
impede the collapse provided that the cores are circular. The maximum velocity 
generated in the collapse exceeds the maximum phase speed of the axial waves by a 
constant factor. Thus while the timescale for the collapse is changed, the finite time 
singularity in this enhanced filament model remains. 

One can show from the above considerations that in the presence of viscosity the 
Siggia-Pumir model leads to a reconnection time which is independent of the 
Reynolds number as Re --f 00. As the vortex tubes approach, one can crudely model 
the decay of the circulation by 

dI'/dt = - ( l / R e ) r / P ,  (1.16) 

where 6 is the separation between the vortex cores. Assuming that 6 z r as the 
vortices enter a singular configuration we model the variation of 6 by 

dP/dt = - r, (1.17) 

which, in the absence of viscosity leads to the Siggia-Pumir collapse. Solving (1.16) 
and (1.17), one obtains the relation 

P ( t )  = exp (Re (I'(t)  - l)), (1.18) 
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where the initial separation and circulation are taken to be one. As t increases, the 
circulation remains virtually constant until the singularity time, which is given by 
t* = 1 in these units. At this time, in the presence of viscosity, the circulation rapidly 
drops to zero leaving a separation which is constant in time. Thus viscosity 
regularizes this singularity. However, the separation can still become very small. For 
example, if we define the reconnection time t, as that time needed to decrease the 
circulation to one half its initial value then it can be shown that 

t, N 1 + O( 1/Re). 

At this time from (1.18) we have 

S=exp(-l$eI). 

The velocities near this time are enormous since they scale as F/S. Thus the 
Siggia-Pumir model predicts a reconnection time which decreases with increasing Re 
and tends to a finite limit as it must since a singularity develops. 

Clearly, these estimates will depend strongly on the deformation of the vortex. At 
present no self-consistent model for vortex deformation and its effect on stretching 
is available. Below we discuss several attempts to model the deformation. 

1.2. Modelling of vortex deformation 

1.2.1. Kambe's model 
Kambe (1983) has shown that if two oppositely signed shear layers in the plane are 

driven together by a straining flow, destruction or cancellation of vorticity can take 
place on a nearly convective timescale which increases very slowly with increasing 
Reynolds number and scales inversely with the rate of strain of the flow. Following 
Kambe we consider a two-dimensional flow of the form 

u = -a( t )x ,  21 = a(t)y+V(x,t). (1.19) 

Such a velocity field represents the action of an external, irrotational strain flow on 
a region of vorticity which varies only with x. The vorticity w is directed along the 
z-axis and is given by 

The vorticity equation for this flow becomes 

w = wk = (aV/ax) k .  (1 20)  

awlat  - awlax = v a 2 w / i w .  (1.21) 

where B(t) = exp44(t), A(t )  = dt'a(t'), s, 
(1 2 2 )  

(1 2 3 )  

the vorticify equation becomes the heat equation in a stretched coordinate system : 

= v a2w/at2. 

For a(t) constant we have 
(1.24) 

6 = exp (at) x, T = 1/2a[exp (2at)- 11. (1.25) 

Kambe considered the evolution of a shear layer with an initial distribution of 
vorticity given by 

(1 26)  w ( x , t  = 0) = U[6(x+x0)-6(x-xo)], 
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where 6(x )  is the usual Dirac &function. Such an initial condition models a highly 
elongated vorticity distribution. Using dimensionless variables, in which lengths are 
scaled by xo and velocities by U ,  the solution of (1.24) with initial data (1.26) is 

(1.27) 

where T(t)  = (2/Re) [exp (sat) - 11 (1.28) 

and Re, the Reynolds number is given by Re = UX,,/V. For large values of the 
Reynolds number the peaked structure of' the vorticity is maintained until T(t) 
increases to be O(1) .  For a constant this occurs a t  a characteristic reconnection time 
t ,  given by 

t, - lnRe/(Ba). (1.29) 

I n  contrast with the result obtained from the Siggia-Pumir model this timescale 
increases very slowly with increasing Re. Thus, the reconnection process as modelled 
by Kambe is fairly rapid even a t  large values of the Reynolds number, but the result 
also mirrors the underlying existence of the inviscid flow field for all time. Kambe's 
model is not self-consistent in that the in-plane strain is imposed and is not coupled 
to the vorticity. Moreover, the imposed strain is two-dimensional. 

1.2.2. Model of Buntine & Pullin 

Attempting to improve upon Kambe's model of reconnection, Buntine & Pullin 
(1989) studied the effect of'a specified out-of-plane straining flow on the dynamics of 
the vorticity and its subsequent decay. In particular, they studied flow fields of the 
form 

u = - a ( t ) x + d ( x , y , t ) ,  (1.30) 

(1.31) 

(1 3 2 )  

For such flow fields, w is a passive and diffusing field, whose only effect on the two- 
dimensional field (u, v)  is through the specified strain rate P(t). The evolution for the 
z-component of vorticity o is given by 

a. aw a. 
-+u-+w- = /?(t)O+VV20. 
at ax ay (1.33) 

Buntine & Pullin repeated Kambe's analysis with smooth initial vorticity 
distributions but similar in form to (1.26). For positive and constant a and /3 they 
found that the circulation is determined asymptotically in time solely by the strain 
rate a as 

r(t) - C(aBe)te-Xt, (1.34) 

which for large Re yields the same timescale for reconnection as that given by 
Kambe. That is, asymptotically the stretching of the vortices by out-of-plane strain 
does not influence circulation destruction in this model. 

Buntine & Pullin also computed the pressure drop a t  the vortex centre and showed 
that it agrees well with the pressure drop as computed by Moore & Saffman (1971) 
for an elliptical (Kirchhoff) vortex in a straining flow. This is remarkable in the light 
of the fact that the Moore-Saffman result is derived from an equilibrium solution of 
the Euler equations. This observation is used by Saffman in his construction of the 
model of reconnection described below. 
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2. Saffman model of reconnection 
In  recent work, Saffman (1990) has attempted to partially couple the strain flows 

to the vorticity distribution. He posed a set of nonlinear partial differential equations 
to  describe the approach of two vortices, as well as their subsequent core deformation, 
stretching, and diffusion. Saffman presents the model equations and some 
preliminary numerical results together with some conjectures on the timescales 
predicted by the model for core deformation and for reconnection. Here we will show 
that the asymptotic behaviour of the model can be understood completely in terms 
of the behaviour of special solutions of the model equations. From these solutions we 
derive an asymptotic estimate for the timescale for reconnection. It will be seen that 
Saffman’s model predicts an eventual decay of the axial out-of-plane strain as the 
vortex cores flatten, leading once again to a timescale for reconnection which is 
proportional to log (Re) and inversely proportional to the in-plane strain rate a. The 
model also predicts, in the absence of viscosity, that  the vorticity will ultimately 
grow through mutually induced stretching at only a linear rate. A linear rate of 
growth of the vorticity has been observed in the work of Anderson & Greengard 
(1989). On the other hand, Pumir & Siggia (1990) observe exponential growth a t  late 
times. We now turn to a discussion of Saffman’s model. 

2.1. Equations of motion 

Referring to the schematic in figure 1, we consider the motion of two counter- 
rotating vortex tubes that are merging about z = 0. Note that figure 1 shows merging 
about z = n. This exact configuration will be discussed later in connection with the 
numerical solution. For the purposes of this discussion however, we simply translate 
the x-coordinate by K. It is assumed that the irrotational strain field in this region is 
given by 

An estimate for the rate of strain a is obtained by considering the in-plane strain 
arising in the plane of closest approach of two vortices shown in figure 1 and is given 

a = kT, /R2 ,  (2.2) 
by 

where R is the initial radius of curvature of the tube at z = 0, 4 is the initial 
circulation, and k an undetermined constant set by the geometry. The evolution of 
the axial strain, P ( z ,  t ) ,  is determined from the balance of axial momentum. 

Let 6 ( z ,  t )  denote the distance between the core centroids, and b(z ,  t )  and h(x, t )  the 
minor and major semi-axes of the deformed cores. Saffman models the evolution of 
the centroid position and the core area bh of the vortices by the convection-diffusion 
equations 

a s p  = - (a + /I) 6 + V ’ / S ,  

a(bh)/at = -P(bh) + v’. 
(2.3) 

(2.4) 
Here v’ is proportional to the kinematic viscosity v and, following Saffman, is given 
by v‘ = 2nv. The vortex cores have circulations T(z, t ) .  The decay of the circulation 
is modelled by 

Saffman now models the x-momentum equation by 

a r p t  = - v’r/s2. ( 2 . 5 )  

awlat = -ap/ax- aw/az, (2.6) 
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FIGURE 1. Geometric configuration of two vortices of opposite circulation. 

where w and p are average axial velocities and pressures over the cores. The rate of 
strain ,4 may now be determined from the axial velocity: 

P ( z ,  t )  = (aw/W (2, t ) .  (2.7) 

We now lack only an expression for the pressure p ,  which is assumed to depend upon 
the core deformation. Using the observations of Buntine & Pullin (1989) on the 
evolution of strained vortices, the pressure is modelled by the expression 

where 0 = h/b is the axis ratio, and 

The aspect ratio 0 is given by 
f ( s )  = o/(i +e2). 

0 = 1 +4r with r = nabh/r+ bh/P. (2.10) 

These expressions originate from a calculation of the pressure drop a t  the centre of 
a Kirchhoff elliptical vortex which is held steady by a given straining flow (Moore & 
Saffman 1971). We refer the reader to Saffman (1990) for further details concerning 
the derivation. We note however that the model effectively fixes the aspect ratios of 
the elliptical vortex cores once their separation, 6, and area, A ,  are given. In this 
respect, it  cannot be compared directly with numerical simulations which pose both 
aspect ratio and separation as initial conditions. Rather, the initial conditions of this 
model should be interpreted as some appropriate intermediate configuration which 
has been reached. 
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The essential idea as stated by Saffman is that in the plane of closest approach, 
cancellation of vorticity by viscosity, will raise pressures in the vortex cores. This 
yields a pressure gradient and drives axial flows which then complete the 
reconnection. It should be pointed out, however, that given the use of elliptical 
vortices and the related formula for the pressure given above, axial flows are set up 
independently of the viscosity. Thus the model also makes predictions in the limit 
p -+ 0. We elaborate on this point below. 

The equations of motion are now closed, with four equations of evolution for the 
four unknowns a, A = bh, r, and w. After appropriate scalings of the dependent 
variables, these equations, in non-dimensional form are 

where 

and 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Here, E = a/R is the ratio of the core size of the vortices to the radius of curvature 
of the vortex tube, and 

p = V ' X / ( @ )  

is an inverse Reynolds number. The dimensional space and time variables, z*,  t* are 
given by 

Following Saffman we have set k = 1/7c for definiteness. 
Below we present numerical results in addition to those presented by Saffman. It 

will be seen from these results that SaEman's model predicts an eventual decay of the 
axial out-of-plane strain as the vortex cores flatten. This leads once again to a 
timescale for reconnection similar to that given in (1.29). We also show that the 
asymptotic behaviour of the model can be understood in terms of the behaviour of 
special solutions of the model equations. From these solutions we derive an 
asymptotic estimate for the reconnection timescale. 

z* = €-+az, t* = &/a. 

2.2. Numerical solution 
We have solved these equations numerically for the initial conditions 

n n 
L L 

6(z,  t = 0 )  = 2 +--- cos (27cIL) 2: 
(27c/L)2 (27c/L)2 

(2.15) 

with 

and with periodicity of the solutions assumed on [ - $L, I&]. Spatial derivatives are 
calculated by discrete Fourier transforms, and integration forward in time is 
accomplished by a fourth-order Adams-Moulton method. For these initial con- 
ditions, the two centroids are closest together at z = 0, and for z < 1,  we have 

s z 2 + 2 ,  (2.16) 

which is the initial condition considered by Saffman in his study. Such initial 
conditions correspond t o  two tubes with no initial axial flows, but with a pressure 

A(z , t  = 0) = 1,  Q2,t  = 0)  = 1, w(z, t = 0 )  = 0, 
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FIGURE 2. Numerical solution of the Saffman model. Plotted here are the separation S and area 
A as a function of z for various times. The time ranges from 0 to 15 in steps of 1.5. 
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FIGURE 3. Numerical solution of the Saffman model. Plotted here are the circulation r and 
axial velocity w as a function of z for various times. 

high in the plane of closest approach. In  the numerical simulations, L is taken large 
enough so that the relevant results are independent of it. Figures 2 and 3 show the 
computed solutions to (2.11)-(2.14) with the above initial conditions. Here E = 0.5, 
,u = and L = 30. The time t ranges from 0 to 15 in increments of 1.5. Figure 4 
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FIGUKE 4. A plot of the separation 8, the vorticity w ,  the circulation r, and axial rate of strain p 
as functions of time t a t  z = 0 and a t  selected values of the inverse Reynolds number y (see text). 
The inviscid limit y = 0 is indicated by a dashed line. 

- 10 0 10 
Z 

FIGUES 5 .  Variation of the pressure p with x at same times given in figure 2 .  

shows the separation, vorticity, circulation and axial rate of strain at  z = 0 a8 

functions of time. The behaviour is typical of the model. Initially, the centroids 
collapse towards one another a t  z = 0, driven by the straining flows. The axial out- 
of-plane strain rate /? increases from zero, causing a decrease in the core area A.  
Provided that the centroid separation is greater than O(pi), the circulation does not 
decay significantly and the vorticity w increases rapidly through stretching. 
However, this process is not self-sustaining. As the centroids are driven together, the 
vortex cores become increasingly elongated and flattened. As the aspect ratio 0 = h/b 
becomes large, the termf(0) in the pressure, and thus the pressure itself, approaches 
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FIGURE 6. The functions l/@ andf(0) at z = 0 as functions of time. 

zero. As the pressure is by definition here bounded from above by zero, this process 
leads to a broadening of the pressure distribution about z = 0. Consequently, the 
pressure gradient is reduced, and a region of uniform pressure propagates outwards 
from the centre. Figure 5 shows the pressure (calculated from (2.14)) as a function of 
z a t  the same times as in figures 2 and 3. Figure 6 shows 116' and f ( 0 )  a t  z = 0 as 
functions of time. This process does not stop until the centroids have reached the 
viscous lengthscale. Note that neither l/e nor f ( 0 )  go completely to zero. At this 
point, it is the decay of r, rather than f ( @ ) ,  that drives the pressure p further towards 
uniformity in the reconnection region. 

The decrease of /3 is a consequence of the diminution of the pressure gradient. At 
late times in the neighbourhood of z = 0, we have demonstrated that 

a z p / a z 2  x 0. (2.17) 
A t  such times the axial momentum equation (2.14) is now essentially the Burger's 

(2.18) 
equation 

awlat = - w aw/az, 

or (2.19) 

Evaluating this expression at z = 0, setting /3 = aw/azl,,,,, and noting that 

at all times from these initial conditions, we have 
a 2 w / a z 2 1 , , ,  = 0 

dB/dt = - ,k?, (2.20) 
or / i=C/( l+Ct) .  (2.21) 
This is precisely the behaviour observed in figure 4. We next examine the behaviour 
of the model as the effective viscosity ,u is varied. Figure 4 shows the separation 6, 
the vorticity w ,  the circulation r, and axial rate of strain /3 as functions of time t at  
z = 0. The results are shown for p = 1.0 x 0.33 x lo+, 0.25 x lo+, 
and ,IA = 0 (shown as a dashed curve). 

There are several features worth noting : 
(i) For large times, 6 reduces to a value which is roughly O(p4). 
(ii) The location as a function of time of the peak vorticity increases with 

decreasing p. 
(iii) For p = 0, the ultimate growth of the vorticity is only linear. This is due to  

the decay of the pressure gradient and the elong$ion of the vortex cores. The linear 
growth follows directly from the behaviour of 

0.5 x 

in (2.21). 



Vortex reconnection of perturbed anti-parallel vortex tubes 627 

1 - 
e 

0 

-0.1 
P 

-0.2 

- 10 0 10 

FIGURE 7 .  Behaviour of the pressure for p = 0. 
Z 

0.4 0.5 m 
c -I 

0.3 

0.2 

0.1 n 
0 2 4 6 8 1 0  0 5 10 15 

t t 
FIGURE 8. Plot of the functions l / O  andf(0) us. time for p = 0. 

We define the reconnection time as the amount of time over which Tdecays to half 
of its initial value. The reconnection time increases with decreasing p. 

The strain rate P shows little dependence upon p. This is because the process of 
decay of the pressure gradient proceeds on an essentially inviscid timescale. This is 
confirmed by calculations displayed in figures 7 and 8, which respectively show for 
p = 0 the pressure as a function of z, a t  the same times as in figure 4, and 1/0 and 
f ( @ ,  a t  z = 0 as functions of time. Note now that 1/8 goes asymptotically to zero. 

2.3. Analytical solution at late times 

It is now straightforward to discuss the large-time behaviour of the Saffman model 
in the reconnection region, for which the numerical results presented above suggest 
that we should assume that the pressure gradient has disappeared, and seek special 
solutions to (2.11)-(2.14) of the form 

S(z , t )  = i ( t ) ,  A ( z , t )  = A@), T(Z, t )  = F( t ) ,  w(z ,  t )  = j ( t )  2 .  

By substituting this Ansatz into the equations of motion, these solutions can be 
found essentially in closed form as 

(2.22) 

(2.23) 

(2.24) 
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FIGURE 9. A plot of the reconnection time t ,  (see text) vus. inverse Reynolds number ,u (solid 

line). The asymptotic result of (2.31) is plotted for comparison (dashed line). 

and 

Here we make several further comments. Our numerics indicates that the solutions 
to the full set of equations (2.11)-(2.14) are attracted to these similarity solutions in 
a time only weakly dependent upon the viscosity p. For fixed ,u > 0, as t -+ CQ, we 
have 

The only quantity which might appear to deviate from the behaviour given above is 
the area A .  Figure 2 shows no growth of A a t  x = 0. However, note that from (2.23) 
A increases to be O( 1) only on the very long timescale O( l/,u). If p = 0, we then have 
the special solutions 

B(t) = P o / V  +Pot), (2.26) 
&) =Aol(1+P,t), (2.27) 

(2.28) 

f ( t )  = 4. (2.29) 
&t)  = atexp (-2s&)/[(i + ~ ~ ) z t t ] ,  

Note that for these special inviscid solutions 

d = f / A  = (T,/A,)(l+/?,t). (2.30) 

That is, the vorticity grows only linearly, as observed in figure 4. 
From the special solutions (2.22)-(2.25) it  is now easy to extract the timescale 

for reconnection, as predicted by Saffman's model. Defining t, by T(t,) = +G, 
substituting (2.24) into (2.25), we find that as p+0,  

t, - In ( ~ e ) / ( 2 4  = In (1 /p ) /26 .  (2.31) 

Recall however that we have scaled the time variable. In  terms of dimensional time, 

t i  = In (Re)/(2a).  (2.32) 

At long times this is the same timescale as that given by Kambe and Buntine & 
Pullin. We verify (2.31) in figure 9 by comparing the predicted reconnection time t, 
with that calculated directly from numerical simulation of the Saffman equations. 

The Saffman model does not include the effects arising from the translation and 
subsequent stretching of the vortices due to mutual induction. For this reason, it 
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cannot be viewed as a valid description of the early-time behaviour of the tubes. 
There is evidence, however, from the results of Pumir & Siggia (1990) and the 
numerical results to be presented below, that the translational motion in the region 
of closest approach of the vortices eventually decreases substantially. At  this point 
further stretching would be induced through the action of axial flows in and near the 
core. Because the straining flows at this point are, for the most part, externally 
imposed by the rest of the vortex, it is in this configuration that one might expect 
the Saffman model to provide physically consistent results. However, as we shall 
show below, the simple picture of the straining flow used in the Saffman model is not 
in accord with the results of numerical simulations. Thus, this aspect of the model 
would have to be improved upon in order to make quantitative comparisons. 

3. Numerical solution of the Navier-Stokes equations 
In  order to assess the effect of core deformation on the dynamics generated by the 

close approach of two counter-rotating vortices, and to test the validity of the 
Saffman model we have performed numerical simulations of their interaction. The 
simulations described below are performed using two different numerical methods, 
both based upon pseudo-spectral techniques. For simplicity, we have chosen to 
examine the interactions in a triply periodic geometry. For moderate Reynolds 
numbers (up to 1500), a spectral method over a uniform grid is used. At higher 
Reynolds numbers, the range of scales generated by the flow cannot be adequately 
resolved by this method given the memory limitations of current supercomputers. 
Thus, an adaptive spectral method is employed which locally resolves the active 
region of the flow, a t  the expense of lower resolution for the remainder. The standard 
spectral method has an operation count of O(N31nN) per time step, while the 
variable mesh method requires O(N4) operations per time step. 

3.1. Numerical implementation 
The equations of motion for the velocity v(x,  y, x ,  t )  = ui+vj+wk and the dynamic 
pressure P(x ,  y, z ,  t )  = p+$u.u, for a given viscosity v and unit density are the 
Navier-Stokes equations in rotation form : 

av 
- = uxw-VP+vV2v, (3.1) at 

v*v = 0,  (3.2) 

(3.3) where 

is the vorticity. The pressure can be related to the nonlinear term by computing the 
divergence of both sides of (3.1), and applying (3.2) to yield the Poisson equation 

w = w1 i+ wz j + w3 k 

V2P = v-  ( v  x w).  (3.4) 
Since the geometry is periodic, it  is possible to compute the pressure directly. 

3.1. I .  Numerical integration in time 
The time-stepping algorithm for both fixed and variable mesh simulations consists 

of leap-frog differencing on the nonlinear term and pressure, which are related 
through (3.4), and Crank-Nicholson differencing on the diffusion term. This gives 

(1 - vAt V z )  dn+l) = 2At( dn) x 0'") - VP'%') + ( 1  + vAt V z )  u("-'), 
v2p(") = v . (v(n) x OW), 

(3.5) 
(3.6) 
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where dn), dn) represent the value of the velocity and vorticity respectively at t = 
nAt .  This time integration method is second-order accurate. The main difference 
between the two numerical methods used in this work lies in the inversion of the 
elliptic equations for u(*) and 

3.1.2. Xpectral method utilizing a uni form grid 
The spectral method utilizing uniform grids is well established as a technique for 

accurately updating (3.5) and (3.6), and only an abbreviated discussion is given here 
(for example, see Canuto et al. 1988 or Gottlieb & Orszag 1977). Given the periodicity 
of the solution on the cube [0, %I3, the solution is discretized over a uniform grid of 
N, x Nu x N, points, in the x-, y-, and z-directions, respectively. The discrete solution 
may then be represented as a discrete Fourier series, which can be evaluated rapidly 
using the PFT algorithm. The nonlinear term is evaluated on the physical space 
mesh, where o is approximated from its discrete series representation. The Laplacian 
is diagonalized in this case by the discrete Fourier transform, and thus (3.6) is easily 
solved for the pressure. The diagonalization of the Laplacian allows the direct 
solution of dn+l) in (3.5). The advantage of the spectral method is that the spatial 
consistency error, for infinitely differentiable velocity and pressure fields, is of infinite 
order. 

3.1.3. Spectral method utilizing a stretched grid 

independently in each spatial variable xi as 
For the second spectral method, a periodic change of variable is introduced 

xi = figi), i = 1,2 ,3 .  (3.7) 

Each fi&) is a prescribed, infinitely differentiable function satisfying f i ( 0 )  = 0 and 
fi(27c) = 2x, with f;(ti) strictly positive and periodic on [0,27c]. Derivatives with 
respect to xi are replaced by 

(3.8) 

The solution is now sampled at  uniformly spaced values of &. This allows the discrete 
solution to be represented as a discrete Fourier transform, now in the new variables, 
and to  again use this representation to approximate derivatives. As in the spectral 
method described previously, nonlinearities are evaluated in physical space. 
However, unlike the first method, the discrete Laplacian in (3.5) and (3.6) is now no 
longer diagonalized by the discrete Fourier transform, and different methods must be 
employed to solve these elliptic equations. Our approach will be t o  construct 
eigenfunctions which will diagonalize the discrete Laplacian. 

As the change of variable is introduced independently in each variable, the elliptic 
equations remain separable. To construct these eigenfunctions, we need only solve, 
in each direction, the one-dimensional Sturm-Liouville problem 

with +j(() periodic on the interval [0,2n]. We represent these eigenfunctions as a 
superposition of Fourier modes in 5. Using equally spaced values of ti as our 
collocation points, (3.9) becomes 

(3.10) QDQDYj = ,iij Yj ,  j = 0, . . . , N -  I .  
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Here periodicity implies that Yj, ,, = Yj, N .  Q is a n N  x Ndiagonal matrix with strictly 
positive entries [a],, = q(lcAt), and D is an N x N circulant and skew-symmet<ric 
difference operator of rank N - 2 ,  arising from the derivative approximation given by 
the discrete Fourier transform. 

The eigenfunctions of (3.9) are of course cos ( j f ( [ ) )  and sin (jf(E)), with ,uj = - j 2 .  
When h(6) = 1 (giving 0 = I ) ,  the eigenvectors of the discrete system (3.10) are 
1+9~, , = cos ( jE  At)  and sin ( j k  At) ,  or the eigenfunctions of (3.9) evaluated a t  the 
collocation points k A t ,  with eigenvalues ,Lj = pj = - j2 .  

This is not generally the case for non-constant q because of the approximation 
made by discretizing c, and it is necessary to solve numerically for the discrete 
eigenvectors and eigenvalues of (3.10). This is done by diagonalization of the matrix 
A = QDQD to give A = P A P I ,  where A is diagonal with [A],, = ,&,. The matrix A 
has 18 distinct eigenvalues, each of multiplicity two, and while A is not symmetric, 
it is straightforward to show that its eigenvalues are real and non-positive. They are 
ordered so that ,lo = fil = 0, ,12& = ,18k+l and ,lz8+l 2 @,2k+2. The eigenvectors of A then 
give a basis for the discrete solution in that direction. Tn this basis, the representation 
of the solution is found by multiplication by P-l. This multiplication also yields the 
components of the solution associated with the zero eigenvalues; these are set to zero. 
Thus, the solution of each discrete elliptic equation requires two N x N  matrix 
multiplications (by and P) ,  applied separately in three directions, against 
N 2  N-vectors. The operation count is thus O(N4). The matrix multiplication can be 
implemented very efficiently on vector processors as N 2  applications of, for example, 
the LINPACK routine SAXPY over vectors of length N 2 .  The specification of the actual 
stretching functions which are employed is deferred to the next section where we 
provide details of the initial conditions. 

3.2. Initial conditions and symmetries 

3.2.1. Initial conditions 

The initial conditions used here are three-dimensional perturbations of two 
parallel circular vortices in close proximity to one another. The configuration of the 
initial vorticity field consists of two counter-rotating tubes of vorticity on either side 
of the plane y = x. The centroid of each tube is perturbed sinusoidally. The vorticity 
within a single unperturbed tube is axisymmetric about its centre and has a 
component in only the z-direction. That is, for an unperturbed vortex, setting the 
centroid a t  x = y = 0, we have 

w = d(r )k  with r2 = x2+y2. (3.11) 

I n  this study, we have used the compact, infinitely differentiable vorticity 
distribution first employed by Melander, McWilliams & Zabusky (1987) and given by 

(3.12) 

with f ( r )  = exp [ -Kexp (7- 1)/7], K = iexp (2) In (2). 

The initial condition considered here is given by 

h ( x ,  y, z )  = [G3(r-r+(z))  -d3(r-r-(z))]  k, 
r+ = [n - E (  1 - cos x )  sin (in)] i+ [n + b - c( 1 - cos x )  cos ( $ x ) ] j ,  

r- = [n - E (  1 - cos z )  sin (iz)] i+ [n - b + e( I - cos z )  cos (+n)]j ,  

(3.13) 

where 
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where 2b is the spacing between the vortex centroids in the plane of closest approach. 
Following Melander & Hussain (1988, p. 257), we choose 26 = 1.73. 

After perturbing the vortices in this fashion, Ci, is not divergence free. We therefore 
project Ci, onto a divergence-free field by defining the initial velocity as 

(3.14) u ( x ,  y ,  2 ,  t = 0) = v x (V”)-’Ci,, 

and finally, the true initial vorticity field as 

w(x, y , z , t  = 0) = vx u(x, y , z , t  = 0). (3.15) 

While the projection yields a velocity with no component in the z-direction, it does 
introduce slight perturbations in the variation of the vorticity components with x 
and y .  Note that the centroids of the two vortices are furthest apart in the plane 
z = 0, and closest in the plane z = 71. The plane z = 71 will be referred to as the plane 
of closest approach. This plane is a material (free-slip) surface for the flow, and we 
have ul,,, = u ( x ,  y ,  n) i+v(x, y ,  n) j ,  and 01,,, = w3(x ,  y ,  n) k. 

Finally, we define the Reynolds number by 

Re = r/v, (3.16) 

where r is the circulation in a cross-section of a single, unperturbed vortex core. 

3.2.2. Symmetries 
The set of initial conditions considered here have symmetries that are preserved by 

the equations of motion. These symmetries are exploited in the simulations to reduce 
the computational domain from [O,2nl3 to [0,2n] x [0, n] x [0,  x]. In  particular, about 
y = 0 and y = n, the velocities u and w are even functions of y while the velocity v 
is an odd function of y. Similarly, about z = 0 and z = n, the velocities u and v are 
even functions of z while the velocity w is an odd function of z. As a consequence of 
these symmetries, the velocity and pressure fields will have the Fourier series 
representation 

+a3 +m +a, 

u(x ,  y ,  z ,  t )  = x C C Ujkl(t) eijx cos Icy cos Zz, (3.17) 
j=-m k=O l = O  

f o o  +m +a 

v(x, y ,  z, t )  = C C C Fkl( t )  eiiz sin Icy cos l z ,  
j=-a k=l 1-0 

(3.18) 

+w +a, +a, 

w(x, y ,  z, t )  = x x C F k 2 ( t )  eijz coskysinlz, 

P(x ,  y ,  z ,  t )  = C. qL2(t) eijx cos ky  cos Zz. 

(3.19) 
j=-m k-0 1=1 

+w +m +a, 

(3.20) 

We note that in evaluating the velocity and pressure, half-range Fourier transforms 
may be employed in certain directions. We have made use of such transforms in both 
sets of simulations with a consequent reduction of computational work. 

3.2.3. Consequences of symmetry 
Four of the six faces of the computational volume V = [0,2x] x [0, n] x [0, x] are 

free-slip surfaces of the flow. We merely exclude the periodic end faces x = 0 and 271. 
We label these four remaining faces 17 (at z = K), 17’ (at y = K), S (at z = 0) ,  and s’ (at 
y = 0) (see figure 1) .  17 is the horizontal face in the plane of closest approach, 17’ is 
the vertical face separating the two oppositely signed vortices; S is the horizontal 

j=-m k-0 1-0 
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face where the two vortices are furthest apart; and S‘ is the vertical face whose 
presence is necessary due to the assumed periodicity of the flow. In the absence of 
viscosity, the circulation in each of these faces is a conserved quantity. In particular, 

c,= w , d A  J, (3.21) 

is conserved in the absence of dissipation. This is the quantity we expect to  decay 
rapidly in our viscous calculations. There is also a kinematical balance among these 
four circulations which is valid even in the presence of viscosity. Using that V - w = 

0, the divergence theorem, and periodicity in x, we have 

O =  V-wdV’z o*ndA’= (Cn+Cm)+(Cs+C,,), (3.22) 

where n is the outward-facing unit normal to the volume V. This relation will be used 
in the next section. 

In  the plane of closest approach? the vorticity transport equation reduces to an 
equation of evolution for the z-component of a, and has a particularly simple form. 
It is 

1” s,, 

aw, aw ao,- aw 
-+u?+v- - o3-+vV2o,.  
at ax ay a Z  

(3.23) 

The stretching term is reduced to only the single term w3aw/az. Note that aw/az is 
a principal rate of strain, with its associated vector (the z-axis) orthogonal to the 
plane of closest approach. Thus, in this region the evolution of vorticity is 
determined by the vorticity times the out-of-plane or axial strain rate, and the 
diffusion of vorticity. Note that the diffusion term in (3.23) involves derivatives in 
the z-direction. Equation (3.23) gives a very simple equation for the evolution of the 
vorticity at  a critical point. Let ( X ( t ) ,  Y ( t ) )  denote the path of a critical point in the 
plane of closest approach, i.e. 

a%/axl(x(t), ~ ( t ) )  = 0 (3.24) 

a%/aYI(x(t), ~ ( t ) )  = 0. (3.25) 

Let &(t)  = w,(X(t) ,  Y ( t ) ,  K ,  t ) .  Taking a time derivative of &(t)  and applying (3.23) 
yields 

(d/dt) &(t) = &(t)  (aw/az) (X( t ) ,  Y( t ) ,  x, t )  + vV2u(X(t) ,  Y(t) ,  K, t ) .  (3.26) 

If, for example, in (3.26) with v = 0, the scaling aw/& - w3 developed, a blow-up of 
the vorticity as in the Siggia-Pumir model would occur. 

Similar statements hold also within the other symmetry planes, but it is within the 
region of closest approach that the vorticity shows its greatest stretching, gradient 
production, and dissipation. Our choice of stretching functions, fi(xi), also reflects 
this ; in our calculations with stretched grids, resolution is enhanced about and within 
the plane of closest approach. 

3.2.4. Choice of stretching functions 
As will be clear from the results, the generation of small scales is mostly 

concentrated in the reconnection region, that is, about z = K and y = x. Thus, we 
have chosen the very simple stretching functions 

Y(E,) = 6 2  - ay sin (5, - n) (3.27) 
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FIGURE 10. A plot of the stretched grid used to compute the flow, superimposed upon a contour 
at 4% of the maximum of the vertical vorticity w3 at t = 1.50. 

d53) = (3 -a, sin ((3 - 0 (3.28) 

This choice is equivalent to a local mesh size in the y-direction (for example) a t  
y = '~t of size Ay = A&(l -ay), where At2 = n/Ny and N,  is the number of points in 
the y-direction. Further, we introduce a change of variable in the x-direction: 

(3.29) 

where the choice of x,, gives the most resolution in the x-direction a t  the point of 
maximum vorticity. This point is kept approximately fixed by the introduction of a 
time-dependent change of frame in the x-direction. This change of frame is found by 
performing a low-order polynomial fit to the path of the vorticity maximum from 
calculations at  lower Re. For the highest Reynolds number calculations, this fit is 
refined so as to follow this path more closely, by refitting the path from previous 
calculations with a cubic spline. This gives some improvement in the results. In each 
calculation, the values of a,, ay, and a, are time independent. Thus, the 
diagonalization of the elliptic operators, discussed in the previous section, need only 
be done a t  the beginning of the calculation. The implementation of the method was 
checked by comparison with the uniform grid results a t  lower Re, and early time 
results for higher Re. We also examined the effect of varying the values of a,, au, and 
a,. We found that in general the introduction of stretched meshes yielded more- 
resolved calculations, and allowed access to higher Reynolds numbers. For the 
results shown here, we have used a, = ay = a, = 2. That is, the local resolution in the 
reconnection region is four times that of the uniform mesh method using the same 
number of points. 

The calculations a t  Re = 3500 to be detailed below were performed using the 
variable-mesh method discussed above. From t = 0 to 1.1875 the resolution was 
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FIGURE 11. The directional spectra computed in the & variables, for Reynolds number 3500, at 
t = 0.5 (solid), 0.75 (dashed), 1.25 (solid), and 1.50 (dashed). The first two times are calculated from 
12P data and terminate a t  k = 64, while the last two are from 1603 data and terminate at lc = 80. 
Shown here are spectra in (a) the s-direction, ( b )  the y-direction and ( c )  the z-direction. 

N, = 128 and N, = N, = 64 on the quarter-cube [0,2n] x [0, n] x [0, n], with the 
time-step At = 0.001 25. At t = 1.1875 the resolution was increased to  N ,  = 160 and 
Nu = N, = 80, and the time-step decreased to At = 0.000625. 

3.2.5. Resolution of the adaptive method 
I n  order to  give some feeling for the resolution attained by our adaptive numerical 

method, figure 10 shows the grid used in the highest-resolution calculation (1603 on 
the whole cube, disregarding symmetries). The grid is overlaid with the boundaries 
of the computed vortex cores in the plane of closest approach for a run to be 
discussed in detail below with Re = 3500 at t = 1.50. This is when the maximum 
vorticity is realized at that Reynolds number; the boundary is a vorticity contour a t  
about 4% of the maximum. The grid is most dense about the region of maximum 
vorticity and provides there a local resolution equivalent to the use of 640 points in 
each direction. 

3.2.6. Directional spectra 
A further check on the accuracy of the results to be discussed below can be 

obtained from an examination of directional spectra. Figure 11 shows the associated 
directional spectra, computed in the ti mapping variables (see (3.7)), at t = 0.5,0.75, 
1.25, and 1.50. The directional x-spectrum, for example, is defined by 

(3.30) 
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where A ,  is the Fourier transform of v taken with respect to the ti variables: 
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(3.31) 

It is in the (separable) mapping variables & that the numerically computed solution 
is represented and in which it should be well resolved. Aside from a trivial translation 
in the x-direction, these three mappings are fixed in time and have equal stretching 
factors. The first two times are calculated from data, while the last two are from 
1603 data. Again, the decay of the spectra indicates that the calculations are well 
resolved, although we do note some accumulation of energy near the Nyquist 
frequency in the z-spectra a t  t = 1.50. This indicates that the z-direction is actually 
the hardest direction to resolve. This is somewhat surprising in that one would have 
expected the direction in which the vortices are most compressed (the y-direction) to 
be the most difficult to resolve. Apparently, the reconnection event generates high 
curvatures along the z-direction as well. This is consistent with the behaviour of the 
axial strain (see below) ; a t  later t’imes we found the axial direction the most difficult 
t o  resolve. As this difficulty was lessened by increasing the grid stretching in the z -  
direction, it appears to arise from the local behaviour of the flow around 2 = n, rather 
than from the less-resolved outer flow. 

We now turn to a detailed discussion of the  numerical results. 

3.3. Numerical siwuulation of reconnection 

First, we will examine the evolution from the initial conditions given in (3.13) for 
R e  = 3500. Subsequently, we will examine the effect of varying the Reynolds 
number. For these calculations we have taken t: = g, which yields cores that abut 
each other slightly in the plane of closest approach. 

3.3.1. Volume rendering of the solution 

Figures 12(a-e) (plate 1 )  and 13(a--e) (plate 2) display the evolution of the 
vorticity fields a t  various times ( t  = 0, 0.75, 1.25, 1.50 and 1.75) during the 
reconnection process. To see the evolution and reconnection of the vortex tubes in 
the ‘large’, figure 12 shows volume renderings of the vorticity magnitude over two 
periods of the flow in the x-direction. Conversely, figure 13 shows volume renderings 
over a half-period in the z-direction, from a viewpoint which allows one to see down 
into the region of closest approach. The ‘voxels’ are coloured by the magnitude of 
the vorticity, with the most intense vorticity appearing as red. The relation of colour 
to vorticity magnitude is shown in the colour bar in figure 13, and is the same in each 
rendering. Note that the colour bar is heavily biased towards the higher levels of 
vorticity (shown in red), yet relatively little red appears in the figure. This is a 
manifestation of the large gradients of vorticity in the region of closest approach. 
While contour plots (see below) show clearly the large vorticity gradients, the volume 
of these regions is quite small and hence little red appears in the volume rendering. 
This small volume is further obscured by the voxels corresponding to lower 
magnitudes of vorticity despite the fact that we have made voxels corresponding to 
these lower levels partially transparent. 

The figures display the global reconfiguration of the vorticity vector field through 
the breaking of vortex lines near the plane of closed approach. The rendering (figure 
12a)  a t  t = 0, shows the initial condition as a perturbation of two-dimensional flow, 
with the tubes in closest proximity in the region of the plane of closest approach 
z = n (and z = 3n). The upper tube appears to be straight, but this is only apparent 
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FIGURE 14. Initial conditions for a simulation at Re = 3500. Contours of o3 at t = 0. Here xmin = 
0.78, x, = 3.92, cmin = - 20, c,,, = + 20, and Ac = 2, where c,,, is the minimum value of a contour 
level, c,, the maximum value, and Ac is the contour level increment. The contour plots display the 
region x,,,,,, < x < x,,, and $ < y < jn. This notation will be used on subsequent contour plots. 
Note that all contour plots are of length n on a side. 

in that its perturbation rises out of the viewing plane. Figure i 3  (a)  again shows the 
two tubes, but truncated a t  z = 0 on the bottom, and at  z = IT on the top. By t = 0.75 
(figures 12b and 13b) the perturbation has grown because the tubes in the region of 
closest approach have a higher translational velocity relative to the remainder of the 
vortices. Significant axial flows have now developed, and it is from this time that the 
maximum vorticity, which lies in 17, becomes aligned with positive axial strain (see 
(3.23)) and begins to increase rapidly. At t = 1.25 (figures i 2 c  and i 3 c ) ,  the vorticity 
is still increasing, but the tubes in the region of the maximum are also becoming 
increasingly flattened. This leads both to the rapid dissipation of vorticity there 
through viscous cancellation, and to a control on the rate of mutually induced 
stretching through a decrease in the translational velocity. At t = 1.50 (figures 12d 
and 13d), the vorticity has reached its maximum value in the calculation, its growth 
cut off by the dissipation of vorticity. This maximum again occurs in the plane of 
closest approach and is about seven times its initial value. The circulation of the 
vortex cores there has decayed to 70 % of its initial value. Note that the two vortex 
tubes, above and below the plane of closest approach, have begun to orient 
themselves towards one another. From this time, the vorticity in 17 decays very 
rapidly, virtually annihilating the vortex tubes there. This allows t h e  vorticity field 
to reconfigure itself. By t = 1.75 (figures 12e and 13e) this process is complete, and 
leaves in its wake a series of vortex ‘rings’. Note that vestigial amounts of vorticity 
remains, joining the rings. The circulation in the region of closest approach does not 
decay to zero. Plots of the vorticity vector field a t  this time do show that the vector 
field of the ring is now truly connected across the plane y = x, which initially 
separated the two vortices. We observe also the amplification of background 
vorticity near the tubes. This phenomenon was first noted by Melander & Zabusky 
(1989). Further, as the reconnection process proceeds, the development of helical 
disturbances in the vortex cores is observed. 

21 2 
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FIGURE 15. Contours of wg for Re = 3500 at (a )  t = 0.75 (cmin = -27, cmax = +27, A(: = Z ) ,  (xnlin 

2.089), ( c )  t = 1.50 (cmin = - 125, clnax = + 125, Ac = lo), and (xm,,, = - 1.328, xnlsx = 1.813), ( d )  t = 
1.75 (cmin = -45, c,,, = +45, Ac = 10) (xmi,, = -1.464, zmax = 1.877) (see figure 14 for notation). 

3.3.2. Core deformation 

We now focus our attention more closely on the interaction of the vortex tubes in 
the reconnection region. Of particular interest is the process of core deformation. The 
dynamics a t  Re = 3500 are illustrative of our calculations. Figure 14 shows the 
contours of w3 in the x = n plane, a t  t = 0. Figures 15-17 show the contours of wQ,  
awlaz and vV2w,, respectively, in the z = n plane, at t = 0.75, 1.25, 1.50, and 1.75. 
These times were chosen as they each illustrate a distinct portion of the reconnection 
process as observed in our calculations. 

The vorticity does not begin to stretch immediately from t = 0. At t = 0, aw/az = 0 
everywhere, and for short times the maximum of wQ in 17 actually lies in a region 
of slightly negative aw/az. But by t = 0.75 (figure 15a), the vorticity maximum has 
become aligned with positive aw/& and begins to increase. Significant core 
deformation has already occurred as the two vortices have been flattened against one 
another. This deformation is not fore-and-aft symmetric, with t'he extrusion to the 
right of oppositely signed, elongated ribbons of vorticity. Referring to figure 16 ( ( A ) ,  

= -0.273, zmax = 2.868), ( b )  t = 1.25 (cmin = -85, c,,, = +85, AC = lo), (zmin = -1.052, zmaX = 
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FIGURE 16. Contours of aw/& for Re = 3500 at ( a )  t = 0.75 (c,,,, = -6.5, c,,, = f3.5, Ac = l) ,  

z,,, = 2.089), (c) t = 1.50 (cmi,, = -8.5, c,, = +8.5, Ac = 1), and (zmi,, = -1.328, xmax = 1.813), 
(d )  t = 1.75 (cmin = -9.5, c,,, = +8.5, Ac = 1) = -1.464, x,,, = 1.677) (see figure 14 for 
notation). 

(x,~,, = -0.273, xmaX = 2.868), ( b )  t = 1.25 (cmi,, = -6.5, c,,, = +10.0, AC = l ) ,  (zmin = -1.052, 

i t  is seen that these ribbons sit well within the region of positive axial strain aw/az. 
Thus, the vorticity in the ribbons will be further enhanced and flattened. This 
behaviour is typical of our calculations and leads to the rapid dissipation of vorticity 
through viscous cancellation. I n  accordance with this point of view, figure 1 7 ( a )  
shows that strong dissipation is occurring along the extended ridge in w3 which runs 
the length of the vortex tails. 

At t = 1.25 (figures 15b, 16b, and 17 b ) ,  vorticity stretching is now well underway, 
as indicated by the reduced support of the two vortices in the plane of closest 
approach. The vorticity magnitude has now increased to four times its initial value. 
The vortices have an aspect ratio of about 7.5 : 1, and have become yet more flattened 
against each other. Again, the ribbons lie in the region of positive axial strain rate, 
and again it is along the ribbons that the greatest dissipation is taking place. 

At t = 1.5 (figures 15c, 16c, and 17c),  the vorticity has reached its maximum value 
in the calculation, which is about seven times its initial value. The diffusion term is 
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FIGURE 17. Contours of vV%, for Re = 3500 at (a) t = 0.75 (c,,, = -45, c,,,,, = +45, Ac = lo), 

x,,, = 2.089), ( c )  t = 1.50 (c,,, = -850, cma, = f850, Ac = loo), and (zmin = - 1.328, x,,, = 1.813), 
(d )  t = 1.75 (cmin = -425, c,,, = +425, Ar = 50) (x,,, = -1.464, z,,, = 1.677) (scc figure 14 for 
notation). 

(zmin = -0.273, rmax =2.868), ( b )  t = 1.25 (emin = -860, c,,, = +850, AC = loo), (x,in = -1.052, 

now comparable to  the stretching term, and i t  is from this time that the vorticity 
magnitude begins a rapid decay. In fact, the decay of the vorticity magnitude from 
this time is as rapid as was its increase through stretching. That is, the reduction of 
the vorticity crossing 17 is occurring on a nearly convective timescale. The circulation 
in 17 has decreased to 70% of its initial value. The vorticity distribution in 17 has 
become yet more elongated and flattened, with each vortex now separated into a 
small, nearly circular vortex at the head, trailed by the ribbons. The aspect ratio of 
the vortices is about 17 : I. The dissipation of vorticity is largest a t  the head. 

By t = 1.75 (figures 15d, 16d, and 17d), the vorticity in 17 is now strongly 
dissipated, and its maximum value has decreased t,o about a half of the value at t = 
1.50. The circulation in 17 is at 40% of its initial value. The global maximum of the 
vorticity now resides in the newly formed vortex ring, observed in figure 12(d), 
rather than in the plane of closest approach. The reconnection process is complete. 

To study further the vortex core deformation, and in particular the formation of 
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FIGURE 18. (a) The quantity Ci(z) (see text) shown at times t = 0 (solid curve), 0.75 (short-dashed), 
1.25 (medium-dashed), and 1.50 (long-dashed). ( b )  The circulation C(z) (see text) shown a t  the same 
time as in (u). 
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the ribbons, we examine more closely the distribution of vorticity within the 
vortices. Figure 18 (a)  shows the integrated vorticity 

Ci(x)  = us($, y, z = n) dy. 1 
That is, Ci(x)  measures the amount of vorticity along a vertical cut through the 
vortex, and the variations in C’i(x) can be identified with specific features of the 
vortex. Figure 18(b )  shows 

C ( x )  = Ci(s)ds, 

a t  the same times. Thus C(x)  is the circulation in the rectangle [O, x] x [0, n] (C(2n) = 
C,), and measures the relative contributions that the structures in the vortex make 
to the circulation in Il. 

At t = 0, the graph of Ci(x) corresponds to the nearly symmetric vortex shown in 
figure 14. At t = 0.75, the appearance of the ribbons is reflected in Ci(x)  as the plateau 
to the right of the peak. While C(2n) is hardly changed in its value from t = 0, 
approximately 30% of the circulation now resides in the ribbons. This portion has 
increased to 67 % by t = 1.25, the circulation has begun to decay significantly, and 
the vorticity distribution is becoming increasingly non-uniform. At t = 1.50 while the 
head of the vortex has become well-separated from the ribbons, and while the 
vorticity maximum is located there, it contributes only 15 % of the total circulation. 

3.3.3. Reconnection and the decay of C, 
The rapid decay of Cn can be related directly to the observed phenomenon of 

reconnection. Recall the kinematical relation Cn+ Cm = - (C, + C,) (equation 
(3.22)), and that each circulation is conserved in the absence of viscosity. It is seen 

1 
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FIGURE 19. The four circulations, C,, C,, G,, and C,. shown as functions of time: 
for Re = 3500. 

that the two free-slip faces X and S remain well separated from the region of strong 
interaction between the two vortices. Thus, in the presence of viscosity, C, and Cs, 
should change only on a timescale that is long relative to the timescale of rapid decay 
in C,. Then, considering C,+C,, to be a constant over this fast timescale, C,+C,  
is also a constant, and rapid decay of C, must give a likewise rapid increase in C,. 
This is vortex reconnection ; the presence of viscosity not only quickly reduces the 
amount of vorticity crossing 17, but also allows the augmentation of vorticity 
crossing 17'. It is precisely this behaviour that is manifested in our simulations. 
Figure I9 shows these four circulations as functions of time. Their behaviour indeed 
suggests the presence of well-separated timescales in this flow. Over the period of the 
calculation, C, and Csr are nearly constant ; individually and as a sum, they change 
in value by less than 1 YO. Conversely, C, shows rapid decay, and C, shows rapid 
increase (as it must) as vorticity becomes connected across the face 17' (the creation 
of positive circulation in II' corresponds to vorticity connecting the two initially 
unconnected tubes). Melander & Hussain (1989) also observed the transfer of 
circulation from 17 to 17' in their computations. The kinematic balance of circulation 
and the presence of well-separated timescales in this balance provide an explanation 
for this behaviour. 

3.4. EJffect of varying Re and comparison with theory 

We next consider the effect of varying the Reynolds number in an attempt to deduce 
the infinite Reynolds number limit and to compare these results with the predictions 
of the Saffman model. Owing to accuracy and stability constraints, our numerical 
investigation is necessarily limited to  moderate Reynolds numbers. Nevertheless, 
some informative behaviour is seen as the Reynolds number is increased. 

3.4.1. Variation of the maximum vorticity 

Figure 20(a-d) shows the contours of w3, a t  t = 1.50, in the plane of closest 
approach for the four largest Reynolds numbers, Re = 2000, 2500, 3000, and 3500. 
A t  t = 1.5 the calculation with Re = 3500 attains its greatest vorticity magnitude. In 
all these cases, the maximum vorticity occurs in the leading head of the vortex, and 
few obvious differences are observed in the spatial structure of the vorticity aside 
from the vortices being slightly flatter and more elongated a t  higher Reynolds 
numbers. Figure 21 shows Ci(x) and C(x)  for the same Reynolds numbers. 
Examination of Ci(x)  shows that the structure of the vorticity in non-uniform, with 
the effect of increasing Reynolds number being the increasing separation of the 
head of the vortex from the trailing ribbons of vorticity. Very little dependence upon 
the Reynolds number is seen in G(x) .  
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FIGURE 20. The contours of o3 in the z = n plane for (u)  Re = 2000 (cmi,, = - 85, cmax = + 85, Ac = 
lo), ( b )  Re = 2500 (emin = - 105, c,,, = + 105, Ac = lo), (c) Re = 3000 (c,,, = - 115, c,,, = + 115, 
Ac = lo), (d )  Re = 3500 (c,,, = - 125, cmax = + 125, Ac = lo), a t  t = 1.50. 

Figure 22(a)  shows the maximum of the vorticity in IZ, i.e. 03, for the Reynolds 
numbers 1000, 1500, 2000, 2500, 3000 and 3500. This is also the global maximum of 
101 until the vorticity in IZ has become more dissipated. Figure 22 (b)  shows the axial 
strain awlax at  the point of maximum vorticity in l7. I n  the absence of viscosity, it 
is awl& a t  this point that determines the rate of' growth of the maximum vorticity 
(see (3.26)), and it is the behaviour of the maximum vorticity alone that determines 
the smoothness of solutions to the Ruler equations (Reale et al. 1984). We are thus 
particularly interested in the behaviour of these two pointwise quantities as the 
Reynolds number is increascd. In the Saffman model of reconnection, we found that 
the axial strain in the vortex core, aw/& in (1.13), behavr:d in a way practically 
independent of Reynolds number, while the vorticity o showed a strong dependence 
upon the Reynolds number because its growth becomes unbounded in the infinite 
Reynolds number limit as t - 2  m (see figure 4). 

For Re = 500, the vorticity remained nearly constant for most of the calculation. 
This suggests a balance of stretching and dissipation reminiscent of a diffusing, 
circular vortex in a radial straining flow (Batchelor 1967, p. 271). The behaviour is 
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FIGURE 21. (a )  The quantity Ci(x) as a function ofRe a t  Re = 2000 (solid curve), Re = 2500 (short- 
dashed), Re = 3000 (medium-dashed), and Re = 3500 (long-dashed). ( b )  The circulation G ( x )  (see 
text) shown a t  the same values of Re. Both are a t  t = 1.5. 
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FIGURE 22. (a )  The maximum of the vortioity in Z7, i.e. w,, and (6) the axial strain aw/& a t  the point 
of maximum vorticity in I7 for the Reynolds numbers 1000, 1800, 2000, 2500, 3000, and 3500. 

very different with higher Reynolds numbers, for which such a balance is plainly not 
present. Initially, from t = 0 to 0.75, there is very little growth in the vorticity. It is 
orily from this latter time that the vorticity maximum has become well correlated 
with positive axial strain, and both the axial strain and vorticity begin to grow. This 
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delay in the realignment of the vorticity with positive axial strain, was also observed 
in the reconnection study of Meiron et al. (1989) using zero-circulation vortices. 

As the Reynolds number is increased, the maximum value of w3 realized in the 
calculation is increased. This is not surprising as the vorticity is expected to grow 
without bound in the absence of viscosity as t + co. However, the time a t  which this 
maximum value is realized actually decreases as the Reynolds number is increased. 
Referring to figure 4, we note that this behaviour is at  variance with that predicted 
by the Saffman model as well as the simpler two-dimensional models, wherein the 
time a t  which the vorticity maximum is realized increases with increasing Reynolds 
number. On the other hand, the two highest Reynolds numbers, 3000 and 3500, peak 
a t  approximately the same time ( t  z 1.5), rather than showing any further decrease, 
which is perhaps an indication that this trend will reverse a t  higher Reynolds 
numbers. 

Here we make several remarks. In  the plane of closest approach the vorticity 
maximum does not coincide with the maximum of the axial strain rate aw/az. Such 
a coincidence would presumably lead t o  a greater rate of stretching. This was also 
observed by Pumir & Siggia (1990) in their study of vorticity interactions. The axial 
strain aw/az has both positive and negative values in 17 as a consequence of the 
incompressibility constraint, which implies that 

The various models of vortex merger and cancellation discussed in $31 and 2 ,  posit 
strain fields with uniform rates of strain covering the vortex cores. It is clear from 
figure 16(a-d) that the axial strain rate aw/az is quite non-uniform. In  fact, portions 
of the vortex sit within regions of negative strain. However, we note again that the 
vortex maximum and the vortex ribbons both sit within the region of positive strain. 
The asymmetry of the core deformation is typical of two compact vortices being 
driven together under the action of strain, and may not be important in determining 
the asymptotic timescales for reconnection. In their numerical study of two compact 
vortices being driven together under constant rates of strain, Buntine & Pullin (1989) 
observed very similar asymmetries and also found that the timescales for dissipation 
were still given by their generalization of Kambe’s analysis. Additional discussion of 
the average rate of strain will be presented in the next subsection. 

3.4.2. Variation of the axial rate of strain 
The behaviour of the axial strain a t  the point of maximum vorticity is not quite 

so anomalous. While it is clear that there is a large dependence upon Reynolds 
number, there is the possible emergence of a limiting behaviour. Omitting the 
Re = 1000 case, we see that for each Reynolds number the axial strain begins to 
increase from t = 0.75. Then, before the time of the peak in the vorticity, aw/& itself 
attains a maximum and then apparently saturates. For the two highest Reynolds 
numbers, 3000 and 3500, the two curves are practically indistinguishable up to the 
time of the peak, a t  which they have a slight separation. This is consistent with the 
behaviour observed by Pumir & Siggia in their study of inviscid vortex interactions. 
If this behaviour is indicative of that a t  infinite Re,  then growth of the maximum 
vorticity is at most exponential as pointed out by Pumir & Siggia (1990). We have 
performed a resolution check to ascertain that the behaviour of the strain is not an 
artifact of inadequate resolution. Shown in figure 23 ( a )  is the axial strain a t  the point 
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FIGURE 23. ( a )  The axial strain a w / h  a t  the point of maximum vorticity in 17, and ( b )  the maximum 
vorticity in IZ, for Reynolds number 3500 at various resolutions (9G3 (long-dash), 1283(short-dash), 
and 1603 (solid, from 1 = 1.1875)) on the whole cube. 

of maximum vorticity for several resolutions (96$, 12€i3, and 1603 (from t = 1.1875) 
on the whole cube). Likewise, figure 2 3 ( b )  shows the maximum vorticity. The 9G3, 
12S3, and 1603 calculations all agree well up to  t = 1.375, which is past the saturation 
time of the axial strain ( t  - 1.22). For the axial strain, the 12S3 and 1603 calculations 
agree fairly well only up to about t = 1.50; in the maximum vorticity they agree well 
to t = 1.75. We found it typical that  the axial strain at the point of maximum 
vorticity is a much more difficult quantity to  capture well than the maximum 
vorticity itself. But, we conclude that a t  the resolutions used here, the saturation of 
the axial strain is a consistent result. 

The behaviour of the maximum vorticity with increasing Remay be thought to be 
indicative of a finite time singularity. However, we note from (3.26) that the 
vorticity maximum cannot diverge if the axial strain remains a bounded function in 
time. No apparent divergence is seen in the axial strain, but it is possible that the 
Reynolds number is not yet sufficiently large to have been truly asymptotic 
behaviour in this quantity. 

3.4.3. Assessrmnt of the rate of strain 
Figures 24 (a) and 24 (b )  show the position of the vorticity maximum in 17, x,,,(t) 

and ynlax(t). A measure of the translation of the vortices in the plane of closest 
approach is given by xmax(t). As the free-slip surface between the two vortices is 
located at  y = x, the distance between the two symmetrically placed extrema is 
2(x-yma,(t)). As the vortices are being driven together (cf. figure 22(a ) ) ,  their area 
is decreased by stretching but there is little accompanying increase in the 
translational velocity owing to the flattening of the vortex cores. This behaviour is 
contrary to that observed in the circular filament calculations of Pumir & Siggia, 
wherein the translational velocity diverged as the cores were pushed together. 
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FIGURE 24. (a) The z-coordinate of the vorticity maximum in ZZ, and ( b )  the y-coordinate of the 

vorticity maximum in ZZ, as functions of time. 

Indeed, the translational velocity of the vortices here appears to be decreasing near 
t = 1.5. It is well known that in two-dimensional flow the velocity of advance of two 
vortices of opposite sign is decreased if the vortices become very elliptical. It is easy 
to show analytically that the instantaneous velocity of advance of two Kirchhoff 
elliptical vortices of equal and opposite circulation evaluated at  either vortex 
centroid is given by 

r 
u =  

(b2 + a2 + 1’); + I  ’ 

where a and b are the minor and major semi-axes of the ellipse, respectively, and I 
is the inter-centroid separation. In  a two-dimensional flow, if a decreases, then b must 
increase by conservation of area. If b becomes sufficiently large, then u becomes a 
decreasing function of increasing b. Of course, if this interpretation is applied to  the 
present situation, we must note the area is not conserved (owing to  the axial strain), 
and that both a and 1 are decreasing. Nonetheless, u in the above expression is 
bounded above by T / b ,  and b is bounded well away from zero (see below). This effect 
tends to reduce any further rapid stretching of the vortices due to translation. 

One reflection of the straining flows is the deformation of the vortices in the plane 
of closest approach. Figure 25 (a) shows an estimate o f a  (dashed) and b (solid), again 
the minor and major axis lengths of a vortex, as functions of time, for R e  = 3500. 
Following Buntine & Pullin, these quantities were estimated by first- and second- 
moment calculations, performed over the main portion of the vortex. The behaviour 
of a and b is consistent with that seen in the vorticity contours of figure 15. Of most 
interest is the rapid saturation of b, the major axis length, together with the 
continuing decrease of a. This suggests that the extensional rate-of-strain ( -  (a+P) 
= y in Saffman’s model) has become small, and that the straining flows are now 
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FIGURE 25. (a )  The major and minor axis lengths a and b (dashed and solid, respectively) of the 
vortex core in n, as functions of time for Re = 3500. ( b )  Averaged rates of strain, a (compressional, 
short-dashed), /3 (axial, long-dashed), and y = - (a+/3) (extensional, solid), as functions of time for 
Re = 3500. 

dominated by the compressional and axial strains (a  and /3, respectively). This is 
contrary to the assumptions of the Saffman model, wherein b cannot saturate owing 
to the assumption of time-independence for 01. We note that the estimates of a and 
b when Re = 3000 match very well with those for Re = 3500 to nearly t = 1.50. This 
may indicate that the behaviour of a and b is nearly inviscid up to this time. Further 
note that b is well away from zero, which suggests that rapid stretching through 
translation is controlled. 

It is most natural to examine the straining flows in the plane of closest approach 
between the two vortices. In  particular, the rate-of-strain matrix, has its simplest 
form along the line of symmetry, y = n in the plane of closest approach, which 
separates the two vortices. There Sij has only diagonal terms, and thus the principal 
rates of strain are given by y(x) = (au/ax) (n, n, x) (extensional), a(x) = (av/ay) (n, z, x) 
(compressional), and p(x) = (aw/az) (z, R, x) (axial). To gain some understanding of 
the straining flows acting upon the vortices, these rates of strain are averaged in x 
over that portion of the line which begins and ends a t  the fore and aft of the vortex, 
respectively. Figure 2 5 ( b )  shows these averaged quantities, for Re = 3500, as 
functions of time (a is dashed, /3 is long-dashed, and y is solid). The behaviour of these 
quantities is consistent with that of a and b ,  and more clearly reveals the differences 
from the assumed straining flows of the Saffman model of reconnection. While the 
straining flow is initially two-dimensional, /3 grows rapidly, and as seen for the 
pointwise axial strain at the point of maximum vorticity, subsequently saturates. As 
suggested by the behaviour of 6, the positive extensional rate of strain y decreases 
and becomes small relative to the other two. Finally, the compressional rate of strain 
a is strongly time-dependent, and the final disposition of straining flows is quite 
different from that assumed in the Saffman model. Comparison of the rate-of-strain 
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and 3500, and ( b )  the reconnection time t, as a function of Reynolds number. 

estimates for Re = 3500 shown in figure 5 agree very well with those for Re = 3000 
up to and including t = 1.75. 

3.4.4. Variation of the time to reconnection with Reynolds number 
We next examine the reconnection time as a function of Reynolds number. Again 

we define, as in our discussion of the Saffman model, the reconnection time as the 
time required to decrease the initial circulation by a factor of two. Figure 26 ( a )  shows 
C, for the various Reynolds numbers. The dashed horizontal line is a t  half the value 
of the initial circulation, and the time a t  which it intersects a circulation curve defines 
the reconnection time t ,  (cf. $2.3). This time is shown in figure 2 6 ( b )  as a function of 
Reynolds number (Re = 500 has also been included for comparison). For the higher 
Reynolds numbers, C, shows very little dependence on Re, and the curves become 
practically indistinguishable from one another after the circulation begins to decay 
appreciably. The results imply that the time for reconnection varies more slowly with 
Reynolds number than even the slow logarithmic variation suggested by present 
theory. It is, of course, possible that the largest value of Re considered here is still 
insufficient to observe the expected logarithmic variation. Another possible 
explanation is that the straining flows are not accounted for properly by the theory 
and their true behaviour leads to an even slower variation of the reconnection time 
with increasing Re. 

4. Conclusions 
We close with several comments with respect to points of agreement and 

disagreement with Saffman’s reconnection model and its prediction. While 
phenomenological, Saffman’s model qualitatively reproduces some of the aspects of 
the reconnection process. In particular, they are 
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(i) the presence of in-plane straining flows which drive the vortices together in the 
plane of closest approach. which through the resultant non-uniformity of the vortex 
tubes, creates axial flows which stretch the vortex; 

(ii) the flattening ofthe vortex cores as they are pushed together. The effect of this 
flattening is included in the calculation of the axial flows; 

(iii) the axial strain rate peaks a t  a maximum value, which slows the growth of the 
vorticity. In  agreement with our calculations, it also predicts that the axial strain 
rate peaks before the peak in the vorticity occurs ; 

(iv) by including the effect of vortex flattening upon dissipation of the vorticity, 
it provides a fast timescale for reconnection. 

Points of disagreement are that 

(i) Tn Saffman’s model, the axial strain rate ultimately decays in value like t-’, 
which then gives a linear growth of the vorticity in the absence of viscosity. We do 
not observe this behaviour. Rather, the axial strain rate peaks, but does not 
subsequently decay. In Saffman’s model, once the pressure gradient decays to zero 
there is no further axial strain to stretch the vorticity. In reality a flow is induced by 
the counter-rotating reconnected rings which will continue to stretch the vorticity, 
albeit passively. 

(ii) Although the straining flows deforming the vortex are dominated by in-plane 
strain initially, a t  late times the straining flows are predominantly out of the plane 
of closest approach, with a compensating strain inwards which further flattens the 
vortices. There is little extensional component, however (see figure 26). In order to  
add this significant effect to the model it is necessary to couple the straining flows to  
the overall curvatures of the vortex tubes. 

(iii) The most interesting result from these simulations is the apparently very slow 
variation of the reconnection time with Re. Although we have not been able to  
explore even a decade in Re relative t o  the initial value of Re = 1000 one would 
expect to see an increase in the reconnection time. The extremely slow variation 
exhibited here is also evident in the calculations of Kerr bi Hussain (1989). Tndeed, 
in their calculations using a Gaussian vorticity distribution, the reconnection time 
appears to decrease slightly. Their results are actually more in accord with a 
reconnection time arising from the Siggia-Pumir model whereas our results do 
indicate a slight increase of the reconnection time a t  the highest Reynolds number. 
The logarithmic variation of the reconnection time in the models of Kambe, Buntine 
& Pullin, and Saffman arises from the assumption of a constant underlying in-plane 
strain (a  in Saffman’s model equations). A more rapid increase of the axial or in-plane 
strains with time would lead to more rapid reconnection and a slower variation of the 
reconnection time. One such contribution to the axial strain, not accounted for in the 
Saffman model, would arise from the decay of C,. As circulation in I7 is lost, it 
reappears as reconnected vortex lines crossing IZ’ (see figure 19). These reconnected 
vortex lines will exert an additional axial strain as they are advected upwards. 
Ultimately these vortex lines will form the section of vortex ring crossing ZI’, as seen 
in the volume renderings, figures 12 and 13. Again, that the disposition of the 
straining flow is not properly accounted for in Saffman’s model is seen through 
examination of the contour plots of wg in the plane of closest approach (figures 15 and 
Z O ) ,  together with figure 25 which shows estimates of the vortex semi-axis lengths 
and of averaged rates of strain. While we have seen extreme flattening of the 
vorticity distributions, we have not seen as severe an elongation as is predicted by 
Saffman’s model. This is due to the straining flows in the region of closest approach 
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becoming dominated by the compressional and axial strain rate components. This 
may also have some effect on the variation of the reconnection time. 

There are other proposed reconnection scenarios in the literature. I n  particular, 
Melander & Hussain (1988, p. 257) have provided a descriptive model illustrating 
how reconnected vortex lines straighten and accumulate only near the head of the 
vortex in the reconnection region (this feature is visible in the colour renderings). The 
mechanisms espoused by Saffman and by Melander & Hussain may be com- 
plementary. Saffman’s model uses arguments about the tube non-uniformity and 
pressure to infer the existence of axial flows. A model also including Melander & 
Hussain’s picture would presumably take into account the additional strain from the 
reconnected vorticity. In  the light of the discussion above it would be of interest to 
construct a self-consistent model of reconnection which takes into account these 
apparently enhanced strains. This is currently under investigation. 

Finally, it is interesting to note that the behaviour of the flow in the region of 
reconnection may not be typical of turbulent flows. Ashurst et al. (1987) have 
performed a statistical study of the alignment of vorticity and strain rates in 
Navier-Stokes turbulence. They found that vorticity, on average, tends to align 
itself not in the direction of the most negative or most positive rate of strain, but 
rather in the direction of the remaining, lesser rate of strain. From figure 25 we see 
instead that in the region of closest approach the vorticity becomes aligned with the 
most positive rate of strain. Boratav, Pelz & Zubusky (1992) have recently 
performed a careful numerical simulation of reconnection when the vortices are 
initially perpendicular and a different set of symmetries holds for the ensuing flow. 
In this case, they do observe the statistical alignments of the vorticity with the 
intermediate rate of strain. 
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